skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kamireddi, Neha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Designing computerized approaches to support complex teamwork requires an understanding of how activity-related information is relayed among team members. In this paper, we focus on verbal communication and describe a speech-based model that we developed for tracking activity progression during time-critical teamwork. We situated our study in the emergency medical domain of trauma resuscitation and transcribed speech from 104 audio recordings of actual resuscitations. Using the transcripts, we first studied the nature of speech during 34 clinically relevant activities. From this analysis, we identified 11 communicative events across three different stages of activity performance-before, during, and after. For each activity, we created sequential ordering of the communicative events using the concept of narrative schemas. The final speech-based model emerged by extracting and aggregating generalized aspects of the 34 schemas. We evaluated the model performance by using 17 new transcripts and found that the model reliably recognized an activity stage in 98% of activity-related conversation instances. We conclude by discussing these results, their implications for designing computerized approaches that support complex teamwork, and their generalizability to other safety-critical domains. 
    more » « less
  2. We describe an experiment conducted with three domain experts to understand how well they can recognize types and performance stages of activities using speech data transcribed from verbal communications during dynamic medical teamwork. The insights gained from this experiment will inform the design of an automatic activity recognition system to alert medical teams to process deviations in real time. We contribute to the literature by (1) characterizing how domain experts perceive the dynamics of activity-related speech, and (2) identifying the challenges associated with system design for speech-based activity recognition in complex team-based work settings. 
    more » « less